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Classical mechanics of infinitely many particles in dimensions one and two is 
considered, particles interacting by a superstable pair potential of finite range. 
The group of motion generated by Newton's equations is constructed in the 
space of locally finite configurations with a logarithmic order of energy fluctua- 
tions at infinity. A core of the LiouviUe operator is also described. Results of 
Dobrushin and the author and of Marchioro-Pellegrinotti-Pulvirenti are im- 
proved. 
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1. I N T R O D U C T I O N  

In the last 15 years several papers have been devoted to nonequilibrium 
dynamics of infinite particle systems. Nevertheless, the most fundamental 
problems including the existence of three-dimensional dynamics are still 
unsolved; known results are far from being perfect even from an aesthetical 
point of view. For instance, two-dimensional dynamics has been con- 
structed only for two particular classes of interactions, (3) and relation of the 
dynamics to its formal generator, i.e., to the Liouville operator L, is clear 
only in case of one-dimensional particles interacting with a potential with 
hard core; see Ref. 10. The main purpose of this paper is to remove 
restrictive conditions of this kind. We are going to prove the existence of 
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the dynamics for superstable interactions of finite range in dimensions one 
and two; cf. Refs. 2, 3, and 6. The very same method applies in case of 
anharmonic systems; cf. Refs. 9, 12, and 13. Basic ideas are essentially the 
same as those of Refs. 2 and 3; certain technical tricks developed in Refs. 4 
and 5 are used to control boundary effects. The transition group T t of 
temporal evolution will be  constructed in an explicitly defined set ~2 of 
a l lowed configurations characterized by a logarithmic order of energy  
fluctuations. Furthermore, a dense class Cl(f~) of quasilocal functions 
f~ ~ ~ will be defined such that the Liouville operator is well defined on 
Cl(a  ) and T tCl (a )=  Cl(f~), whence essential self-adjointness of iL and 
some further useful properties of the dynamics follow directly. 

We are going to investigate the motion of a countable collection I of 
identical particles of unit mass in the d-dimensional Euclidean space N a 
with d = 1,2. The usual norm and inner product of R a will be denoted by 
1" I and ( . ,  �9 ), respectively. Configurations of the system are represented as 
infinite sequences o~ = (qk,P~)~eI, where q~ E R a and Pk E •d are the 
position and velocity of the particle labeled by k E I, i.e., o~ E (RZd)l. If 
necessary then the more informative notation qk = q~(~o), p~ -- pk(~0) will be 
used. Only locally finite configurations are allowed, i.e., the sequence 
(qk)kEI of positions may not have limit points at all, but some additional 
restrictions are necessary, too. We assume that our particles interact by a 
symmetric pair potential U: Rd--> ( -  oe, + oe] of radius r > 0 of interaction, 
i.e., U(x) = U ( -  X) and U(x) = 0 if Ixl > r. Let grad U denote the vector 
of partial derivatives of U; then the equations of motion read as 

dpk dqk 
- -~ -- - ~2 grad U(q k - qj), dt - Pk, k ~ I (1.1) 

jva k 

The following regularity properties of the interaction potential are 
needed in the proof of existence of the transition group of motion. The 
potential may have a singularity at 0; then U(0)=  + oe and lim U(x)= 
+ ~ as Ixl-+ + but U is continuously differentiable for x g= 0. If U is 
bounded then continuous differentiability of U is assumed for all x E N a. 
Finiteness of the range of  U can certainly be weakened, but the present 
proof seems to be optimal in the case of interactions of finite range. It is 
more important that singularity of U, if any, cannot be too strong. Indeed, 
in a dense medium the velocity of propagation of  shock waves depends on 
the strength of the interaction, and this velocity becomes arbitrarily large in 
the extreme case of hard cores. The related very intensive transfer of energy 
from infinity towards the center may result in an explosion of the system in 
a finite time. One-dimensional geometry does not allow such a critical 
accumulation of energy, but explosion of infinite systems of hard spheres 
on the plane can be demonstrated by means of simple examples. Thus, if 
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d- -  2 then interactions with a hard core are excluded, we assume that 

Ixl ]grad U(x)l <~ a + bU(x) (1.2) 

holds with some positive constants a and b. From a mathematical point of 
view (1.2) means that the singularity of U cannot be stronger than that of 
]xl -b. We shall see later that under (1.2) the velocity of energy transfer is of 
the order of the square root of energy on the spot, which is essentially the 
same as velocity of energy transport due to an ordered flow of particles. 
Just as in equilibrium theory, (~6'~7) we need superstability of the interaction 
to control the number  of particles. Let A >/0, B > 0 and suppose that 

Z U(qk -- qj) >~ --An + BN (1.3) 
k = l  j ~ k  

holds for any finite collection q l , q 2 , . . . ,  qn of points of W, where N 
denotes the number of pairs [k,j] such that ]% " qj] ~< r. Notice that (1.3) 
is equivalent to condition (SS) of Ref. 17, but it seems to be a little bit 
stronger than superstability as defined in Ref. 16. Of course, both condi- 
tions can be verified under some natural assumptions, e.g., if U is not 
integrable near 0; cf. Refs. 16 and 17 with some further references. Let us 
remark that for pair potentials of finite range (1.3) is a general sufficient 
condition for the existence of Gibbs random fields with interaction U; see 
Ref. 17. Finally, the following local Lipschitz condition will be used in the 
study of contraction properties of the right-hand side of (1.1); i t  is conve- 
nient to control Lipschitz continuity of (1.1) in terms of potential energy. 
Let L > 1 + 2a /b  and suppose that 

]grad U ( x ) -  grad U(y)[ ~< L [ L  + U(x)+ U(y)]C[x-  y] (1.4) 

holds for all x, y v a 0 with some constant c >/0. Notice that L + U(x) + 
U(y) > 0 in view of (1.2). If U is bounded then c = 0 may be assumed, but 
c > 1 is necessary in the singular case. (1.4) means that the singularity of U, 
if any, cannot be too weak, logarithmic singularities are excluded. For a 
more general form of (1:4) see (U) in Ref. 3. The validity of (1.2); (1.3), 
(1.4) will be supposed throughout this paper. 

As is usual in the theory of infinite systems, solutions to (1.1) are 
constructed as limits of solutions to finite subsystems of (1.1). The passage 
to the infinite system is based on an a priori bound expressing a local 
version of the law of energy conservation. Heuristic ideas behind the a 
priori bound are the following (cf. Ref. 2). Consider the total energy H of 
particles in a box V; then H is proportional to the volume of V, while the 
energy of external particles interacting with internal ones is proportional to 
the surface of V, i.e., to H 1- l/a. In view of the law of energy conservation, 
only boundary effects influence the value of H, namely, the work of 
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external forces and the transport of energy through the surface of V. On the 
other hand, (1.2) implies that velocities of both kinds of energy flow are of 
the same order, H 1/2, thus in the least favorable case the order of d H / d t  
may be as large a s  H1/2H l-1/d= H 3/2-1/d. Since d u / d t  = u x has global 

solutions only if X < 1, we can hope for an a priori bound in terms of total 
energy only in dimensions one and two. A nonrigorous example outlined in 
Ref. 3 suggests that such a bound may not exist in the three-dimensional 
case, because critical accumulation of energy may result in an explosion of 
the system in a finite time. A mathematical realization of the ideas above is 
not quite trivial. Just as in Refs. 2 and 3, energy flow will be controlled by 
means of a partial differential inequality formulated in terms of a spatial 
cutoff of total energy. The new trick of the present proof of the a priori 
bound is a more effective--and more sophisticated--definition of the 
spatial cutoff; cf. Refs. 4 and 5. 

The construction of the core of the Liouville operator is based on an 
analysis of dependence of solutions on initial data. This approach is fairly 
general and applies to any deterministic model satisfying a reasonable a 
priori bound. Since even the local space-time behavior of solutions depends 
on energy level of the initial configuration, a scale of uniform norms of 
quasilocal functions corresponding to increasing energy levels seems to be 
the right tool in the study of the transition group; see Ref. 4. The problem, 
however, is more complex in case of interacting diffusion processes. Re- 
lated questions are to be discussed elsewhere. 

2. MAIN RESULT 

The space ~2 of allowed configurations is defined in the following way. 
Let g(u) = 1 + log(1 + u) and let H(~o,/x, o) denote total energy plus a 
multiple of particle number in the sphere with center /~ ~ N d and radius 
a > 0, i.e., 

t/(,0, o) = y Z Lpkl 2 + a + 
I qe- ~[ < 

with A > 0 being the same as in (1.3), then 

j~k  
Iqj-t~l < o 

(2.1) 

H(~o) = sup sup o-dH(~o, tz, o) (2.2) 

is called the logarithmic fluctuation of energy, or energy level of ,0, and f~ is 
defined as the set of all locally finite r E (]~2d)/ such that H(~0) < + m. The 
configuration space f~ is equipped with the product topology and with the 
associated Borel structure. Let us remark that f~ carries a large class of 
probability measures including all Gibbs random fields with interaction U; 
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see Refs. 2, 3, and  10. If ~0} ") is a sequence of trajectories in f~ then 
convergence  of r ") means  un i form convergence on compac t  intervals of 
t ime of each of the componen t s  qk(~0}")) and  pk(r This convergence,  
however,  need not  be  un i form in k ~ I.  A cont inuous trajectory ~t :  N ~ ~2 
is called a t empered  solution to (1.1) with initial configurat ion ~0 if ~o 0 = ~0, 
H(~ot) is b o u n d e d  in bounded  intervals of time, and  the componen t s  
qk(t) = qk(~Ot), pk(t)-----pk(C0t) are cont inuously  differentiable and  satisfy 
(1.1) for all k c I and  t E R. In  dimensions one and  two we have  the 
following. 

Theorem 2.1. For  each ~0 E ~2 there exists a unique t empered  solu, 
tion o~ r = Tto~ with initial conf igurat ion ~. This solution can be obta ined  as 
the limit of solutions to finite subsystems,  and  T t : R • f~ ~ f~ is a group of 
measurab le  t ransformat ions  of f~ onto itself. 

The  basic a priori bound  implying T h e o r e m  1.3 for d < 2 can be stated 
as follows. Let  ~2 h = [~0 E ~2: H(~0) < h]; then for each h > 0 and T > 0 
there exists a finite h = h(h, T)  such that  Tt~0 ~ f]~; if ~o E f~h and  Itl < T. 
We  suspect that  T,~0 is not  a cont inuous funct ion of o~ ~ f~, but  a relatively 
s t ra ightforward i teration procedure  shows that  the restriction of T t to any  
nonvoid  f~h is a l ready a cont inuous funct ion of ~0 ~ ~2 h ; see Ref. 3. 

If ~:f~---yR then Tt~ denotes  the translate of r by  a t ime t, i.e., 
(T~cp)(~0) = q0(Ttr ). Of course, Tto~ is a joint ly measurab le  funct ion of o~ and  
t; thus T t m a p s  measurab le  funct ions into measurab le  ones. Fur ther  regu- 
larity propert ies  of T t are more  sophist icated than  those we have for finite 
systems. For  example,  Feller cont inui ty and  strong continuity of T t hold 
only in the following sense. Let C0(f~ ) denote  the space of r : ~2 ~ N such 
that  the restriction of r to any  nonvoid  f~h is continuous,  then TtC0(~2 ) 
= C0(a ) expresses a kind of Feller continuity.  I t  is natural  to equip C0(f] ) 
with a scale Mh = sup[l~(~o)l :,o E ah] of  seminorms,  then T t is strongly 
cont inuous with respect  to each of these seminorms;  cf. Ref. 4. 

Conserva t ion  of differentiabil i ty propert ies  is also an interesting ques- 
tion. Let Dkq0 denote  the vector  of part ial  derivatives of a differentiable 
q0 : ~2 ~ N with respect  to coordinates  of qk and  Pk, i.e., Dkr p : ~2 ~ R 2d, and  
introduce Cl(f~ ) as the space of q~ E C0(a) such that  Dkc p exists and  belongs 
to C0(f~ ) for each k E I,  and  for each h > 0 there exist posit ive constants  K h 
and  6 h such that  I (Okc; ) ( ' ) l  < Khexp(--~hlqk(~l) for all ~0 E f~h" Then  we 
have the following. 

Theorem 2,3. If U is twice cont inuously  differentiable on the set 
[ U <  +oo]  then T, CI(f~) = CI(Y~ ) for all t ~ R. 

The  evolut ion of a probabi l i ty  measure  P with P(f~) = 1 is def ined as 
(PT t ) (E)  = P ( T _ t E  ) for measurab le  subsets E of ~2. I t  is well known (see 
Refs. 6 and  7) that  P T  t = P if P is a Gibbs  r a n d o m  field with interact ion U. 



544 Fritz 

Since C](f~) is obviously dense in k2(P ), Theorem 2.3 implies essential 
anti-self-adjointness of the Liouville operator; see Refs. 10 and 15. 

In the next section the appropriate spatial cutoff of total energy will be 
described. Then we prove the fundamental  a priori bound, and investigate 
dependence of solutions on initial data. 

3. CUTOFF OF TOTAL ENERGY 

Let 0 < X < 1 and choose a continuously differentiable nonincreas- 
ing function ep : N ~ ( 0 ,  1) such that ~(u)  -- e x(l-u) if u/> 2, cp(u) = (1 + 
X/2)e -x if u < 1, and ~ is concave for u ~< 2. Notice that r < e x(l-") 
and 0 < -~ ' ( u )  <. Xe a(l-u). Thus if a > 0 then 

f (x ,  o) = 2 f p ( l x  - yi/a)e-~4YLdy (3. l) 

is well defined for all x ~ ~d. In the proof of the a priori bound f ( x  - ~t, a) 
will be used as a smooth version of the indicator function of the d- 
dimensional sphere with center t~ and radius o. From now on we assume 
that o/> 2; then an easy calculation yields 

f ( x  - I~,a) <. c,exp[X(1 -Ix -/L[/o)] (3.2) 

for all x, /~ E R d a n d  o ) 2, while 

f ( x  - #, a) >/c 2 > 0 (3.3) 

if Ix - /~[  < o. Here c 1 and c 2 depend only on X and d, the value of X will be 
specified later. The corresponding version of total energy is defined as 

W(o~, Iz, a)--  ~, f(qk - tx, o)Wk(oO (3,4) 

where qk = qk(~O), PK = Pk(~~ and 

Wk(~O ) = 2A + IPkl 2 + ~ U ( q k  -- qj) (3.5) 
j ~ k  

with A the same as in (1.3); the logarithmic fluctuation of W reads as 

W(o~)=sup  sup o-aW(~o,t~,a) (3.6) 
tz a/> 2g(I ~I) 

A similar cutoff of additive Liapunov functions was used in Ref. 5. 
In the forthcoming calculations the following elementary properties of 

f and W are needed. Observe first that 

f (x ,  o) < e xlx-ylf(y, a) (3.7) 

and 

f ' ( x ,o )  < eXlx-Af'(y,o) (3,8) 
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where f '  denotes the derivative of f with respect to o. Indeed, as - I x  - z I 
i x - Y ] -  lY - z], we obtain that 

-- f w(Izl/o)e-Xix-~l dz / ( x ,  o) 

eXlX-ylfw(]z]/o)e-Xl'-zF az= eXlX-'~(y, o) 

On the other hand, as 

Ix - z[ 
f ' (x ,  o) = - f q/(Ix - z l /o  ) ~ e-Xlzl dz (3.9) 

(3.8) follows in the same way. Let grad f denote the gradient of  f with 
respect to x E W, since r = 0 if u ~< 1, (3.9) implies that 

lgrad f (x ,o ) ]  ~< f ' (x ,o)  (3.10) 

We  also need that 

g(lxl)grad f ( x  -/~,o)1 ~< 4g([/~ I + o)f ' (x  - 1~,o) (3.11) 

first we prove 

Ixl Ig rad f (x ,  0)] < 40f'(x, o) (3.12) 

In view of (3.10) we may assume that Ixl ~> do. Let D 1 = [y ~ W :  ]Y] 
< ] x - Y l ]  and D 2 = a d \ D ] ,  then lYl >~ Ix l /2  if y ~ D2, and -qo ' (u)  
~< XeX(1 - u) implies 

- r < _ q0'(lx - yl /o)e -xjyl 

for y ~ D1, consequently 

o~r'(x, o) -- - f R f ( l Y l / o ) ] y l e - X l / - Y J  dy 

>1 - ~ s176 

>1- ~ fa, ' ( lYl /~ 

olxl ( - y l / o )  x - y  e_Xly I >1 -~- & - r  ~ o~- : -~1  . 
dy 

which proves (3.12). To conclude (3.11) observe that g(u)/u is decreasing if 
u > 0, thus 

Ixl ]grad f ( x  - /~ ,  o)1 ~< ]x - /~ l  ]grad f ( x  - It, 0)] + [/~] ]grad f ( x  - I~, o)] 

~< (40 + I ~l)f '(x - ~, o) 

implies (3.11) a s  g(4o + I~1) < g(4) § g(o + I~1) < 4g(o § I~l)- 
The superstabilitY of U implies the following. 
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and 

Lemma 3.1. There exists a 0 < ?t < 1 such that 

B 
W(w,  IX, o) >> -4 ~ .  f (qk  -- IX,~176 

k E l  

O W(r IX, o) >/ B O--~ 4 ~ f ' (qk  - IX, o )Nk(~)  
k E l  

where Nk(w ) denotes the number of j r k such that lqk - Cljl <~ r, while 
B > 0 is the same as in (1.3). 

Proof.  Introduce 

A.  = [ x ~ R d : u (i) < x (i) < u (0 + m r ;  1 < i <<. d] 

where x (/) and u (~ are the coordinates of x, u E R d, and m is a large natural 
number. Let P denote the set of pairs [k , j ]  such that Iqk - qjl < r, and let 
Pu be the set of [k, j] e P such that k, j e I , ,  where I, is the set of particles 
in A.. If Pu denotes the minimum of fk = f ( q k -  IX, ~ for k ~ I u, and 

hrnr~-d < e, i.e., the diameter of Au is less than e/X, then using (3.7) and 
U(x)  >1 - a / b  we obtain for each [k, j]  E Pu 

(fk + f j )U(qk  -- qj) = 2o .U(qk  -- qj) + (fk + fj -- 2pu)U(qk -- qj) 

20~U(q~ - qj) - - ~ - p . ( e ' -  1) > 

thus (1.3) implies that 

X ( A  + f j )  V(q~ - qj) 
[kd] E e~ 

>1 - A  ~ p . + [ B -  - ~ ( e ' - 1 ) J  ~ O. 
[k.j] ~ P. k~I~ 

B - ~ ( e ' - l ) ] e - "  ~_. (fk+fj) >> - A e '  ~ .  f k + I - ~  
kElu  k [k,jlEP~ 

>/ - 2 A  ~ fk+ B ~ (f~ + f j )  (3.13) 
kEl .  [kdl~P. 

at least if E > 0 is small enough. Now let z E A o (q r l  d , where Z a is the 
d-dimensional integer lattice. Then [A= : u ~ z + rmZ a] is a partition of ~a; 
thus (3.13) implies 

a _  E (fk + fj ) + B W(~ ,  IX, o) > b [k,jl~e\a: 3- [k,jlE~Q,(fk + f j )  (3.14) 

where Qz is the union of all P. such that u ~ z + rmZ d. Given [k, j] @ P, 
the number of z E A o rq rT/a such that [k, j] E Qz is certainly larger than 
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(m - 2)a; thus the number of z with [k,j] ~ Q= is less than m a - (m - 2) a 
<~ 2dm a-1. Consequently, summing both sides of (3.14) over z E A 0 N r2 a 
we have 

I B ( m - 2 ) a - ~ m " - ' I  ~ ( f k+f j )  m aW(o~, I.t, a) >1 
[kd] �9 P 

Since m can be so large that 

B - - - ( 1 - 2 )  a 3  m 2ad>bm B4 

the first statement follows directly for 0 < X < e/mrfd;  cf. (3.13). Using 
(3.8) instead Of (3.7), we obtain the second inequality in the same way. [] 

In the rest of the paper X > 0 will be fixed such that Lemma 3.1 holds 
true. Finally, let us remark that H and W are equivalent in the following 
sense. There exist positive constants c 3 and c 4 such that 

c3H(o~ ) <~ W(w) < c4H(~o ) (3.15) 

for all o~ ~ f~. The first part of (3.15) is a direct consequence of Lemma 3.1. 
Since f ( x  - /~ , o )  < exp[X(l - Ix - / z l / o ) ] ,  by (1.3) it follows that 

W(o~, I~,o) <- K, ~ H(o~, i~,no)e -x" <. K, odff (w) ~ nde -x" 
n=l n=l 

if o/> 2g(I/~[), which completes the proof of (3.15). 

4. THE A PRIORI BOUND 

Just as in Refs. 2 and 3, our basic tool is the following partial 
differential inequality that controls energy flow along tempered solutions in 
dimensions one and two. Temperedness is needed to exclude influence 
from infinity. Owing to the above properties of the spatial cutoff of total 
energy, we can prove a local version of the law of energy conservation. 
Suppose that d < 2. 

Proposition 4.1. There exists a universal constant K >O such that 
along any tempered solution ~t to (0, 1) we have 

3 
w(~, ~,o) < fs(It~ I + ~,)[ W(,o,)] ~/2 

a 
a-S ' ~ w(,~,,., o) 

for  all t ~ [R,/~ ~ I~ d, and o i> 2. 

Proof. Typical notations of previous sections are used without any 
reference; furthermore grad fk = grad f(qk - #, o) and fs = f'(qk -- I ~, O). 
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Differentiating W(~o t, I~, a) with respect to t we obtain 

0 W _ ~ (grad fk Pk) Wk 
Ot k@I 

1 + ~ ~, ~, ( f j - - f k ) (gradU(qk-  qj),Pk+pj) 
k ~ I j ~ k  

In view of (1.2)i 

(4.1) 

Since 

fo [l + Zg(Z)]-d/ dZ= 

a 

and 

[fk --fj[ [grad U(q k - qj)[ < [grad f(zkj - /x ,o) ] (a  + bU(qk - qfl) 

where zkj is a point between q~ and qj. On the other hand, if [qk -- qji < r 
then 

max[ lPkl, [Pk + pj[ ] < K2g([qk[) [ ~(r 

follows from Lemma 3.1, thus using (3.11) and (3.8) we obtain 
1 / 2 ~  , I a 0___W{tt < K,g(l~<l+<')[~(<o,)] ) 

whence the statement follows directly by Lemma 3.1. �9 
This partial differential inequality can be solved by the method of 

characteristics in the same way as in Refs. 2 and 3. For reader's conve- 
nience we reproduce the main steps. Let T > 0, o >/2g([/~[) and define O(t) 
for 0 < t < T as the unique solution to the integral equation 

o(t)= o+  (4.2) 

Proposition 4.t implies that W(o~t, ~,p(t)) is decreasing, i.e., 

W(~0r,/z, a) < W(o%,/~, p(0)) (4.3) 

Let Z(t) = fro(W(%))l/2ds; then (4.2) implies 

p(O) < o + K4[o + g(p(O))]Z(T) 

whence 

p(0) ~< oKs[1 + g ( Z ( T ) ) Z ( T ) I  

follows by an easy calculation (see Ref. 3), consequently (4.3) turns into 

dZ < K6 [ ~(r + Zg(Z)]d/2 (4.4) 
dt 
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as d ~< 2, (4.4) has a maximal solution which is bounded in finite intervals 
of time; thus (4.4) yields a similar bound for W(%), too. Exploiting 
reflection symmetry of (1.1) and of W, the same bound follows for negative 
values of time. By means of (3.15) we can formulate the result in terms of 
H. We have the following. 

Proposition 4.2. For each h > 0 and T > 0 there exists a finite 
h = h(h, T) such that H(co0) < h implies H(~0t) < /7 for all [t] < T provided 
that ~0 t is a tempered solution to (1.1). 

We need a similar bound for the localization of particles. 

ProposiUon 4.3. If w t is a tempered solution to (1.1) and H(r ~< h; 
then ]qk(~o,)] < (1 + ]qk(c%)])exp[T(2/7)'/2] for all k E 1 and It] ~< T; here/7 
is the same as in Proposition 4.2. 

Proof. Proposition 4.2 yields 

dqk - 1 / 2  - / 2  

< g(]q~])(Zh) < (1 + ]qk )(2h) 

for It] < T, which proves the statement. �9 

Remark  4.4. Proposition 4.1 can be proven in all dimensions, it is 
enough to replace g(I/x[ + a) on the right-hand side by [d/2 + log(1 + 
I i~l + o)] a/2. However, (4.4) has a global maximal solution only if d < 2. In 
the d-dimensional case 

- -  . 1 / a  a 
~ W(wt '  l~'a) < Kg(ll~l + a)[ -~a W(~~ ' I~'~ 

would be needed for an a priori bound. 

Remark  4.5. If d = 1 then (1.2) canbe  replaced by U >1 - a / b  and 

rxt IS'(x)l  a + bS (x )  ] 3/= 

Indeed,_ estimating [Pk +pjl[a + b U ( q ~ -  qj.)]l/2 by a multiple of g(Iqkl) 
W(~0,), 

0 W(~,, t~, o) 
~t ~< Kg([ t~l + a)m(~,) ~ W(c0,, ~,a) 

0a 

follows in the same way as Proposition 4.1 has been obtained. In the 
one-dimensional case this differential inequality also implies Proposition 
4.2; see Ref. 2. Very singular potentials of this kind are also discussed in 
Ref. 12, where conditions are stronger. 

Remark 4.6. If d =  1 and (1.2) is supposed then (4.4) yields a 
polynomial bound, namely, in Proposition 4.2 we have /7(h, T) = K,(h + 
(Th) 2+') for any e > 0. 
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Of course, we are not given tempered solutions in general, but any 
solution is a tempered one if I is a finite collection of particles. Thus we 
have uniform bounds which do not depend on the size of the system that 
means compactness of a suitably chosen sequence of approximate solu- 
tions. Hence existence of tempered solutions to (1.1) follows by continuity 
in a similar way as the Peano theorem is proven. The uniqueness of the 
tempered solution is obtained by means of the contraction principle; see 
Ref. 3. In the next section we are going to investigate (1.1) and its first 
variational system simultaneously. 

5. COMPACTNESS AND CONTRACTION PRINCIPLES 

The skeleton of some additional arguments can be summarized in the 
following iteration procedure. Consider a sequence 8(t, m), m = 0, 1 . . . .  of 
nonnegative and continuous functions on [0, T] such that 

8(t ,m) < 8(O,m) + LTgo(p + m) 8(s,m + 1)ds (5.1) 

holds for all t < T and m with some P > 0, o > 0, and L r > 0. If 

8(t ,m) <<. QTexp(mQT ) (5.2) 

for t < T and for all m/> 0 then (5.1) can be iterated infinitely many times, 
and we obtain 

( Lrt)  m 
(~(t, 0) ~ Z ~(0, m) ~--T---.1 gOm(p+ m) (5.3) 

m = O  

for allt~< T. 
Consider now the first variational system associated to (0.1). If A 

denotes the matrix of second partial derivatives of U then we have 

dv k _ dUk 
dt ~ A(qk(~ - qJ(~'))(Uk - O '  dt - v~ (5.4) 

for k ~ I, where u~ ~ R a, v k ~ R d, and ~t is a tempered solution to (1.1). Let 
us remark that (5.4) can be obtained by a formal differentiation of (1.1) 
with respect to a parameter. This parameter  will be chosen as a coordinate 
of the initial configuration % ~ f~; thus [Uk(0)l < 1 and Ivk(0)l < 1 may be 
supposed for all k E I ;  but this restriction is not really essential. From now 
on we consider a fixed initial configuration ~0 0 E ~2, thus all cons tants - -  
apart  from o and p--will  depend on H(~oo) via Propositions 4.2 and 4.3. 
First we prove the existence of solutions to the joint system [(1.1), (5.4)] 
satisfying a reasonable a priori bound. 

Let f :  E ~ [ 0 ,  1] be a continuously differentiable nonincreasing func- 
tion such that f (u)  = 1 if u <<. r, f (u)  = 0 if u t> 2r and - f ' ( u )  < f ( u -  r) 
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for all u E R. It  will be convenient  to use the a_l-type no rm ]x]l = tx (~ + 
Ix(2)[ + . . .  + Ix(a)[ for elements x = ( x ( ~  (2) . . . . .  x (a)) of R a. Suppose 
that  I is finite and  put  

#k(t ,m) = ~ f(lq~ - q J [ -  2 rm)( l~ l l  + ]Vj[l) (5.5) 
j @ i  

where (qk, Pk, u~, vk) ~ e t denotes the corresponding solution to (1.1), (5.4). It  
is obvious that  6 k is an absolutely cont inuous funct ion of time, thus (5.5) 
can be different iated a lmost  everywhere in [0, T]. Elements  of A are 
bounded  in view of (1.4), thus an easy calculat ion shows that  6 k satisfies 
(5.1) with a = 2c + 1 and  O = ]qk(0)] for each k r I .  The  necessary bounds  
follow f rom Proposit ions 4.2 and  4.3; cf. the similar proofs  in Refs. 2 and 3. 
As a consequence,  we obtain  that  

( L J )  m 
6k(t,O ) <~ ~ 6k(O,m ) ~.. g~m(lq~(0)l + m) (5.6) 

m = 0  

Since 6k(0,m ) is bounded  by  a mult iple of gd(lqk(O)[)(1 + m) a in view of 
(1.3), we have  obta ined  an effective a priori bound  for (5.4). In fact, it 
would be possible to s tudy (5.4) in the space of sequences (qk, Pk, u~, v~)~e 1 
such that  w = (qk, Pk)ke~ belongs to ~2, and  

sup(1 + Iqk[)-qog(lukl + [v~l) < + ~  (5 .7)  
k@I 

Just  as in the case of usual configurations,  the notat ions  w = (Uk,Vk)ke 1 
and u k = uk(w), v k = vk(w), uk(t ) = uk(wt), vk(t ) = v~(wt) will be used if 
w, w t r (N2d)~ are associated to (5.4). 

Theorem 5.1. Consider  an infinite collection I of particles in di- 
mensions  one or two; let ~0 0 ~ f~, w o ~ (R2d) 1 and  suppose that  luj(Wo)ll + 
It~(Wo)ll = 1 for a g i v e n j  E I,  while [uK(Wo)ll + IVk(Wo)[l = 0 if k : / : j .  Then  
there exists at least one solution (~ol, wt) to (1.1), (5.4) with initial condit ion 
(~Oo, w0) such that  w, is a t empered  solution to (1.1), and  w t satisfies 

( LTt) m 
lu (w,)l, + Iv (w,)l, -< m=dkj m! g~176 + m) 

for all k E I and  It I < T with o = 2c + 1 and  L r depending only on fT(~0) 
and  T. Here  dkj denotes the integer par t  of Iq~(~o0) - qj(c00)l/2r. 

Proof. Let I ,  = I,(cOo) be ob ta ined  f rom I by  deleting the particles k 
such that  Iq~(~Oo)[ > nr, n = 1,2, . . . ,  and  let ,t~o(")t , w(n)~t , denote  the corre- 
sponding solution to (1.1), (5.4). Then  6k(O,m ) = 0 if m < dfj and  6~(0,m) 
< 1 otherwise, thus (5.6) implies the a priori bound  of Theo rem 5.1 for each 
w}n); for  the sequence ~o}")Proposi t ions  4.2 and  4.3 can be applied. 
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Therefore the Arzela-Ascoli theorem implies the relative compactness of 
the sequence (CO}n),W}n)) in the uniform product topology of trajectories. 
This means that we can select a subsequence n i such that each component 
qk(co}n3), pk(W}n3), blk(W} n')) and Vk(W} n')) converges uniformly on [-- T, r l  
as i--~ + ~c. Let (cot, wt) denote the limit, since T can be arbitrary, (cos, wt) 
can be defined for all t E N. Since/7 is lower semicontinuous, and lukll + 
[Vkl I is continuous, the a priori bounds remain in force for (cot, wt), too, thus 
exploiting the continuity of the right-hand side of the integral version of 
(1.1), (5.4) we obtain that (cot,wt) really satisfies (1.i), (5.4). [] 

The next step is to prove the uniqueness of tempered solutions to (1.1). 
Let cot and ~t be two tempered solutions with coo, ~0 E f~h, and introduce 

dR(C~ ,~t ,m)  = ~ f ( [ q k [ -  R - 2rm)f(lT~k I -- R - 2rm) 
k~ l  

x [Iq - ekl, + Ipk-  pkl,] (5.8) 
where R > 0 and qk ~--- qk(~t),fik 2-Pk(~t)" It is easy to check (cf. Refs. 2 and 
3) that 6 ( t ,m) =  dR(Cot,~t,rn) satisfies (5.1) and (5.2) with p = 0  and o 
= 2c + 1; therefore (5.3) yields 

( LTt) m 
dR(Cot,~t,O ) < )_.j d R ( C o o , ~ o , m ) ~  g~ (5.9) 

m=0 

for all Itl ~< T and R > 0; L r depends on h, R, and T. Since R can be as 
large as necessary, and Proposition 4.3 controls the displacement of parti- 
cles, (5.9) implies the uniqueness of tempered solutions. However, this is 
possible only if the sequence Co}n) defined in the proof of Theorem 5.1 has 
only one limit point, i.e., Co}n) converges to the unique tempered solution, 
which completes the proof  of Theorem 2.1. 

Since 

dR(Coo,~o,m ) < K(1 + h)(R + m) d+' (5.10) 

with a universal constant K, we also have continuity of TtCo as a function of 
Co ~ ~2 h for each h > 0, whence TtC0(~2 ) = C0(~2 ) follows directly for all 
t E N .  

The uniqueness of such solutions to (1.1), (5.4) which satisfy the 
conclusions of Theorem 5.7 can be proven in a quite similar way, but we do 
not need this result. Now we are going to showthat  tempered solutions are 
differentiable functions of the initial configuration, and the derivatives 
satisfy (5.4). 

Consider a given initial configuration Co E f~h and let  Dj (i) , i = 1, 
2 . . . . .  2d, j ~ I denote differentiation with respect to the i coordinate of 
(qj(Co), pj(Co)) E N2a. First we show that 

uk(t ) = Dj(i)qk(T:o), vk(t ) = Dj(i)pk(Ttco) (5.1 I) 
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exist and satisfy (5.4) and the a priori bound of Theorem 5.1 for all i and j .  
This is certainly true for the approximate solutions w} ~ defined in the 
proof of Theorem 5.1. Writing (5.11) in an integral form we see that (5.11) 
extends also to limit points of (~}"), w}"~), which proves that u k and v k are 
correctly defined by (5. t l)  and satisfy the a priori bound of Theorem 5.1. 
Let ~ E Cl(~2 ) and Itl < T, then from the chain rule we obtain that 

ID)%(T,,~)I ~< ~ I(Dko;)(T,,~)l,(lUk(t)[, + I~(t)10 
k @ l  

where 
I(Dkw)(T, c0)l~ < C~exp(- 8elq~(T,,o)l) ~< Cexp(- 81q~(,o)l) 

in view of Propositions 4.2 and 4.3 with some new C < oo and 8 > 0 
depending on h and T. On the other hand, Theorem 5.1 applies to 
lUk(t)ll + Ivk(01, as Itl < T; thus 

( L T r )  m 
ID]cp(Tec0)l <<. C ~ e -<q~l k m! g~ + m) 

k @ l  m=dkj 

Since -[qk] < Iqk -- qjl -- Iqj], [qkl <~ [qk -- qj[ + [qjl, and ]qk -- qjl <<- 2r(m + 
1), rearranging the above sum we obtain from (1.3) that 

(m + 1) a 
IDj(%p(Tt~)I < Cle-<qJl ~ m! (Mg~ + m))m 

m=O 

1 ~< CI e-~l~l k ~T[M,g~ + m)] m (5.12) 
m=O 

with some C 1 and M 1 depending on h and T. Finally, the H61der inequality 
implies 

g~ + m) < (g(p)  + g(m))~ <<. 2~176 + gOm(m)) 

thus (5.12) results 

iDff)~(T,,~)l < Cle-81~1 m~__ 0 1 (2OM1 gO(l~l))~ 

1 (2~  m + Cle ~ 
m=O 

= C , e x p [ M 2 g ~  81qjl] + C2e -<~1 

Since p - l g ~  ) goes to zero as p---~ + oo, we have a C 3 such that 

[Dj(i)ep(Tt~o)l< C 3 ex p [ -  ~1@(~o)11 (5.13) 

holds for all It] < T, H(o~)< h, i =  1,2 . . . . .  2d and j E I ;  C 3 and 8 
depend only on h and T. Since T and h are arbitrary, (5.13) implies 
Theorem 2.3 directly. 
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6. ANHARMONIC SYSTEMS 

In this section we are going to explain how our method works in the 
case of lattice models with attractive interactions; see Refs. 9 and 11-13. A 
continuous spin system with I = Z d is considered in an external field % 
neighboring spins interact by a symmetric pair potent ia l  U. Then the 
equations of motion are 

dPk_  
dt - U'(q  - q j )  j : [ j - k ] =  1 

dqk (6.1) 

dt - Pk ' k E Zd 

where qk, Pk E R, Cp : ~ [0, + O0) and U: R---) [0, + oo) are continuously 
differentiable, U(x) = U ( - x )  and we assume that 

I U'(x)l  < a(1 + U(x)) b (6.2) 

with b < 1//2 + 1//d, furthermore a local Lipschitz condition 

I~0'(x) - ~0'(y)[ + [U ' (x)  - U ' (y) l  

< L[1 + cp(x) + W(y) + U(x) + U(y)]~'lx - y [  (6.3) 

holds with some c > O, L > O. 
Configurations of the system are represented as co = (qk, Pk)k~X ~, and 

where 

W(co, I~, a) -- ~ f (  k - I~, o) Wk(co ) (6.4) 
k 

= 1 + _.P~ + 2cp(qk) + _~ U(qk - Wk(co) q j) (6.5) 
J : I J -  k l  = 1 

and f is the same as in (3.4); the value of 0 < ;t < 1 is not important here. 
Now let 

W ( c o ) = s u p  sup a-aW(co,/~,o) (6.6) 
o/> 2g(I ~1) 

and define f~ as the set of configurations co such that W(co) < + m. 

Theorem 6.1. For each co E ~2 there exists a solution co t = T~w to 
(6.1) with initial condition coo-- co. This solution can be obtained as the 
limit of solutions to finite subsystems of (6.1), and there is no other solution 
~t such that ~o = co, and W(~t) remains bounded in finite intervals of time. 
Moreover, there exists a continuous ~ : [ 0 ,  oo ) •  R-+[0,  oo) such that 
W(Ttco ) < ~(W(co),t) for all co ~ ~2 and t ~ R. 
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Proof. If ~0 t is a solution then 

0 W _ 1 E E (fj - fk ) U'(qk -- qy)(Pk + Pj) (6.7) 
Ot 2 k Ij-kL=l 

and (6.2) implies 

IU'(qk - qy)] IPk + Pj[ < a(1 + U(q k - qj))blp k + Pjl 

< ~ (1 + U(q~ - qj))l/d(2 + U(q~ - qi) + P/~ + P/ )  

thus using (3.8) and (3.11) in the same way as in the proof  of Proposit ion 
4.1 we obtain 

_ _  _ . l / d  0 

O W(o~,, Iz, o) < Kg([ ~t I + o) [  W(w,)J ~ W(~0t, /~,o) (6.8) 
0t 

Repeat ing the proof  of Proposit ion 4.2 we see that (6.8) results in an a priori 
bound  in all dimensions; thus a simplified version of the proof  of Theorem 
2.1 yields the statements of Theorem 6.1. �9 

Theorem 6.1 improves the results of Ref. 13, where b < 1 /2  + l i d  was 
supposed, and the a priori bound  is less effective. Theorem 2.2 can also be 
extended to lattice systems. 

Lattice models with repulsive singular interactions can be treated by 
means  of methods developed for point  systems in Refs. 2 and 3; the 
existence of global solutions can be proven in this way again only in 
dimensions one and two. 
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